
Dihedral Rigidity and Deformation

Nina Amentaa, Carlos Rojasb

aUniversity of California, Davis
bSan Josè State University

A R T I C L E I N F O

Keywords:

shape space

dihedral angles

deformation

rigidity

A B S T R A C T

We consider defining the embedding of a triangle mesh into IR3, up to translation, rotation, and scale,

by its vector of dihedral angles. On the theoretical side, we show that locally the map from realizable

vectors of dihedrals to mesh embeddings is one-to-one almost everywhere. On the implementation

side, we are we interested in using the dihedral parameterization in shape analysis. This demands a way

to visualize statistical results, for instance an average shape. To this end, we give a heuristic method

for mapping interpolations in dihedral space to interpolations between input mesh embeddings, and

we visualize statistical analyses of several families of related organic shapes.

1. Introduction

Usually a polygon mesh is represented by its mesh com-

binatorics and a vector of 3D vertex coordinates, specify-

ing the immersion of the mesh into IR3. A polygon mesh

is rigid when the only motions of the vertex coordinates for

which the faces are not deformed in any way are the rigid

motions (rotation and translation). Non-rigid polyhedra do

exist [Bri97, Con77, Con79], although they are rare; a non-

rigid polyhedron has some flexing motion in which the faces

move but do not deform. That is, the dihedral angles be-

tween faces change continuously while the faces themselves

remain rigid. Herman Gluck [Glu75] proved

Theorem 1 (Gluck). A generic immersion of any mesh topol-

ogy homeomorphic to the sphere is rigid.

By generic we mean all vectors of vertex coordinates, except

some “degenerate" subset of measure zero. So, for example,

if you construct the edge-skeleton of a triangulated surface

such as the Stanford bunny, with rigid stick edges held to-

gether at flexible joints, it will almost certainly be rigid.

Mesh deformation is an important topic in computer graph-

ics, computer vision and scientific shape analysis. Typically,

both edge lengths and dihedrals change during deformation.

The change in edge lengths defines a path in the space of

discrete metrics. The subset of discrete conformal trans-

formations in the space of discrete metrics has been espe-

cially well-studied, eg. [BPS15, SA07, BLL15, ZLL+15].

Lam and Pinkall [LP18] recently proved that infinitesimally

rigid polyhedra always allow infinitesimal conformal defor-

mations, and that the space of these deformations can be pa-

rameterized by a discrete curvature function defined on the

vertices. But discrete metrics do not correspond to 3D shape

in any precise sense: a vector of edge lengths typically has
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multiple discrete realizations as a rigid mesh, and it might

even correspond to a flexible polyhedron.

We are interested in the complementary approach: char-

acterizing deformation by the change in a mesh’s vector of

dihedral angles. The first mathematical question one might

ask is whether there are motions in which all the dihedral

angles stay the same, but the edge lengths change. This is

trivially possible; consider a cube deforming into an arbi-

trary box. Notice that during such a deformation the inner

face angles (plane angles) remain unchanged. So next we

ask if there are deformations in which the dihedral angles

remain fixed, but the inner angles change; we can call this a

dihedral flex. We say that a polyhedron which does not allow

a dihedral flex is dihedral-rigid. It is not known if dihedral-

flexible polyhedra exist. In the first part of this paper, we

prove the following analog of Gluck’s theorem:

Theorem 2. A generic immersion of any triangle mesh home-

omorphic to the sphere is dihedral-rigid.

While interesting as a result in rigidity theory, of course this

is only a small step towards a theoretical justification of the

idea of representing mesh embeddings by their dihedral vec-

tors. In the second part of the paper, we give some exper-

imental evidence that the dihedral representation is a use-

ful and natural shape space. Let’s define the combinatorial

structure of the mesh with the graph (V ,E), so that the di-

hedral vector is a point in IR|E|. Given an input data set of

corresponding meshes, we analyzed them using the normal

statistical techniques and software as points in IR|E|, using

the usual Euclidean metric. Working in a Euclidean space

has obvious advantages, such as simplicity and flexibility.

Before we can do this analysis, however, we need to have

a set of shapes represented as different embeddings of a com-

mon combinatorial mesh. This can be produced from, and

is roughly equivalent to, a dense surface correspondence be-

tween all of the input specimens. While correspondence

problems are famously difficult, there has been terrific re-

cent progress on the problem of computing a common cor-

respondence for a family of similar input shapes, particular

through the use of functional maps [OBCS+12], and recently

by using deep learning as well, eg. [BMRB16].
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Probably the most common approach to shape analysis

uses the usual representation of an embedding by its aligned

vertex positions. An input set of vertex correspondences is

aligned as well as possible, and then treated as points in

IR3|V |. This gives a Euclidean shape space, with the root-

mean-square distance (also known as Procrustes space). We

will compare the two Euclidean shape spaces, dihedral and

Procrustes, in Section 6.

To visualize results of a statistical analysis in shape space,

such as an average or a PCA vector, we need to be able to

construct a mesh embedding for an arbitrary new vector of

dihedrals. This problem appears to be very difficult. Instead,

we visualize the results of operations such as averaging and

PCA using a heuristic method to interpolate embeddings.

We use two algorithms, first a heuristic to get an approximate

embedding and then an optimization algorithm to reduce the

total error of the dihedrals.

Using this approach, we find that lines or planes in dihe-

dral space lead to smooth spaces of natural-looking morphs

connecting sometimes very different shapes. We take this as

evidence that the dihedral metric is a good measure of what

we intuitively mean by shape difference. Specifically, the

morphs are smooth and the shapes of parts that differ by a

rigid motion interpolate via a rigid motion. In earlier work

[RTH+14], we found that attempting to optimize the embed-

ding towards interpolated edge lengths, rather than interpo-

lated dihedrals, produced morphs with discontinuities and

glitches. We believe that this is related to the fact that, out-

side of very simple examples, a specific set of edge lengths

does not have a single unique embedding. We conjecture

that there is at most one embedding per vector of dihedrals.

2. Related work

In 1968, Stoker [Sto68] conjectured that a convex poly-

hedron is uniquely defined by its combinatorics and dihe-

dral angles, that is, that it is dihedral-rigid. This would be

the dihedral version of Cauchy’s theorem on the rigidity of

convex polyhedra [Cau13]. A fairly simple proof of Stoker’s

conjecture for triangulated convex polyhedra was given by

Pogorelov [Pog02]; we draw on his work as well as that of

Gluck. Only recently was a complete proof of Stoker’s con-

jecture provided by Mazzeo and Montcouquiol [MM+11],

using much more sophisticated techniques and applying to

the interesting case of ideal hyperbolic polyhedra as well.

The Maxwell-Cremona correspondence, a classic construc-

tion from mechanical statics, relates infinitesimal edge-length

flexes to dihedrals in a “lifted" structure; an interesting mod-

ern presentation, related to a projective Grassmannian frame-

work, can be found for example in [CW82] . We are indebted

to the excellent online textbook by Pak [Pak10] for much of

the background in this area.

In computer graphics, there is an ongoing interest in con-

structing shape spaces in which geodesic paths correspond

to physically natural-looking morphs, which can be used for

applications such as artistic modeling, shape exploration, and

deformation transfer. These spaces tend to be curved and dif-

ficult to deal with, eg. [KMP07]. A recent series of papers

[HRS+14, HRS+16, ZHRS15] explores the curved shape space

implied by the elastic energy of a deformation, which is the

sum of a membrane term depending on edge lengths and a

bending term depending on dihedrals. They prove [HRS+14]

that it forms a Riemannian manifold, that is, that the bend-

ing term and the membrane term cannot both be zero un-

der a non-rigid deformation, which means that there are no

elastic-energy flexible polyhedra. Using this energy as a

metric, they produce shape averages, principal components

and splines in “shell space". Each of these operations in the

curved shape space proves to be challenging, both mathe-

matically and computationally.

There is a practically successful line of work [BLL15,

KG08, WDAH10] on interpolating mesh embeddings by in-

terpolating both their dihedral angles and their edge lengths,

and then doing a least-squares reconstruction to produce an

interpolating mesh. These methods cannot realize both the

dihedrals and the edge lengths exactly - there are roughly

6|V | parameters and 3|V | degrees of freedom in the embed-

ding - but they are fairly simple to describe and implement

and they produce very nice-looking results. Our first, rough

embedding algorithms belongs in this family of techniques.

The space of dihedral angles was proposed as a represen-

tation for deformation by Paillé et al. [PRP+15], albeit for a

tetrahedralized volume. Again, the number of dihedrals in a

tetrahedralization is much larger than the dimension of the

space of realizable meshes, so in general only an approxima-

tion of a given set of dihedrals is possible.

Finally, an interesting experiment in [IGG01] showed

that ignoring both edge lengths and dihedrals and just us-

ing connectivity to reconstruct shapes can be surprisingly

successful.

3. Dihedral rigidity

One’s first instinct when considering the possibility of a

dihedral flex is to consider the vertex positions pi as func-

tions pi(t) of some parameter t. Then we can consider a tri-

angle (pj , pi, pj+1) and the derivatives, with respect to t, of

its inner angles, eg. �j,i,j+1, and edge dihedrals, eg. �i,j .

At any time along a traditional edge-length flex, the length

derivatives l′
i,j

= 0 at every edge, while at least some of the

�′
i,j

are non-zero. Similarly along any dihedral flex (if such a

thing exists!) we expect to find an infinitesimal motion such

that all �′
i,j

= 0, while there are inner angles for which the

derivatives �′
j,i,j+1

are non-zero. We call a polyhedron which

admits such a motion dihedral infinitesimally non-rigid.

A polyhedron which is dihedral non-rigid must be di-

hedral infinitesimally non-rigid. It may well be possible,

however, for a polyhedron to be dihedral infinitesimally non-

rigid while being rigid; we know that there are many poly-

hedra which are (length) infinitesimally non-rigid, but actu-

ally rigid. Following Gluck, we prove here that a generic

immersion of a mesh forms a polyhedron which is dihedral

infinitesimally rigid, and hence dihedral rigid.

We need to formulate equations that express the fact that
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a given mesh configuration allows an infinitesimal dihedral

flex. Fortunately, working with derivatives is a good way to

linearize a problem!

Constraint on rotations around a vertex

There is a very nice relationship between the derivatives

of the dihedral angles �′ and the derivatives of the triangle

inner angles �′; Gluck used it in his theorem on length rigid-

ity, and we shall too. We have, going around the one-ring of

any vertex pi,

∑
j

�′ij e⃗ij +
∑
j

�′
j,i,j+1

n⃗j,i,j+1 = 0 (1)

where n⃗j,i,j+1 is the normal to triangle tj,i,j+1, and e⃗ij =

(pi−pj)∕||pi − pj|| is the unit vector in the direction of edge

eij . This equation expresses the fact that the instantaneous

angular velocities in the one-ring have to change in a coordi-

nated fashion for the one-ring to continue to “hold together".

Since the edge and normal vectors have three coordinates

each, this gives us three equations at each vertex, for a total

of 3|V |. Let’s call these the vertex equations.

Gluck considered the case in which the change in edge

lengths, and hence the inner angle derivatives �′, are all zero,

so that the edge length infinitesimally non-rigid configura-

tions were those with

∑
j

�′ij e⃗ij = 0

This system has 3|V | equations in |E| = 3|V |−6 variables,

for a mesh homeomorphic to a sphere.

We make the opposite assumption, that the dihedral an-

gles � remain unchanged, so we are interested in non-zero

solutions to ∑
j

�′
j,i,j+1

n⃗j,i,j+1 = 0

In our case we have 3|V | equations in the 6|V |−12 variables

�′.

Angular momentum around a vertex

While Equation 1 is well-know in, for instance, physics

and robotics, we provide a derivation here for completeness;

readers familiar with, or uninterested in, this material can

feel free to skip this section.

Let the matrixRa perform the rotation through the through

the origin with axis a = (ax, ay, az) by angle �. Let’s think

of this as a rotation with speed �. At time t, the position of a

point p affected by the rotation is p(t) = Ra(t)p, where Ra(t)

is the rotation through a by angle t�. The derivative

dp(t)

dt
=

dRa(t)

dt
p = !a × Ra(t)p = SaRa(t)p

where !a is the angular velocity vector (�ax, �ay, �az), that

is, the axis a scaled by the speed � of the rotation, and the

anti-symmetric matrix

Sa =

⎡⎢⎢⎣

0 −�rz �ry
�rz 0 −�rx
−�ry −�rx 0

⎤⎥⎥⎦
is the matrix that performs the cross-product. So the deriva-

tive of Ra(t) is SaRa(t).

Now let’s consider the derivative of a series of rotations.

Say

Rd = RaRbRc .

We get

dRd

dt
=

dRa

dt
RbRc + Ra

dRb

dt
Rc + RaRb

dRc

dt
SdRd = SaRaRbRc + RaSbRbRc + RaRbScRc

Applying SdRd to point p, and expressing it in terms of the

angular momentum vectors, we see that !d × Rdp0 is

!a×RaRbRcp+(Ra!b)×RaRbRcp+(RaRb!c)×RaRbRcp

Here we are using the fact that R(q×p) = Rq×Rp, where R

is a rotation matrix. Just looking at the angular momentum

vectors, then, we have

!d = !a + (Ra!b) + (RaRb!c)

Recall each vector ! was defined in its own local coordinate

system. The rotations in this formula transform them all into

a single global coordinate system. Equation 1 is a specific

example of this formula, in which the sequence of rotations

are those performed by a particle traveling in an infinitesimal

circle around vertex pi of the mesh; the terms have been re-

arranged to group together the dihedral angles and the inner

angles.

Constraints on inner angles

There are additional constraints on the �′ variables which

determine the validity of the mesh. One is that the sum of the

inner angles of any triangle add up to �. Taking the deriva-

tive of this condition is gives us

�′i + �′j + �′
j+1

= 0

We call these the face equations.

Finally, the Law of Sines implies the following differen-

tial cotangent formula for the triangles around a given one-

ring

∑
j

(cot �i,j,j+1)�
′
i,j,j+1

− (cot �i,j+1,j)�
′
i,j+1,j

= 0

We call these the cotangent equations. To see this, let pi be

a vertex, and consider the vertices of its one-ring, pj , pj+1,

etc. Using the Law of Sines, we have

sin �i,j,j+1

sin �i,j+1,j
=

li,j+1

li,j
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Going around the one-ring,

∏
j

li,j+1

li,j
= 1

and so ∏
j

sin �i,j,j+1

sin �i,j+1,j
= 1

Taking the natural logarithm, we have
∑
j

ln sin �i,j,j+1 − ln sin �i,j+1,j = 0

Next we take the derivative. We have (ln x)′ = 1∕x and

(sin x)′ = cos x, so we get

∑
j

cos �i,j,j+1

sin �i,j,j+1
�′
i,j,j+1

−
cos �i,j+1,j

sin �i,j+1,j
�′
i,j+1,j

= 0

which give the cotangent equations.

Condition for a solution

Together, the vertex equations, face equations and cotan-

gent equations form a system with 3V +2V −4+V = 6V −4

equations in 6V − 12 variables.

M�′ = 0

A mesh is dihedral infinitesimally non-rigid if this system

M has some non-zero solution for the �s, that is, if there

is an infinitesimal motion of the mesh that leaves the dihe-

drals fixed but allows the inner angles to flex somehow, while

maintaining a valid mesh.

Following Gluck, we observe that there is a non-zero so-

lution for � if and only if the coefficient matrix M has rank

less than 6V − 12. And for this to be true, it must be the

case that every 6V −12×6V −12 sub-matrix of M has zero

determinant. We can write this condition on the coefficient

matrix itself as a system of
(6V −4

8

)
polynomials in the matrix

elements; call this system F . In Gluck’s proof, he dealt with

a matrix whose coefficients were themselves polynomials in

the vertex coordinates of the mesh, and this allowed him to

argue that the resulting variety formed a set of measure zero.

In our case, the coefficients are the face normals, the

cotangents of the inner angles, and the scalar value one. The

normals and cotangents are not polynomials in the vertex

coordinates. To get around this, we treat the normals and

cotangents as variables themselves; for notational clarity, let’s

write cj,i,j+1 = cot �j,i,j+1. The c and n variables are not in-

dependent of each other. The normals must all have length

one; for nj,i,j+1 = (nx, ny, nz), we have

n2x + n2y + n2z = 1 (2)

In addition, the normal and cotangent variables are conve-

niently related to each other, and to the vertex coefficients,

by the following formula:
[
(pi − pj) × (pi − pj+1)

]
cj,i,j+1 =[

(pi − pj) ⋅ (pi − pj+1)
]
nj,i,j+1

(3)

This formula relates the cotangent to the scaling of the cross-

product to form the triangle normal. To see this, observe that

(pi−pj)×(pi−pj+1) = ||pi−pj||||pi−pj+1|| sin �j,i,j+1nj,i,j+1
We also know that

(pi − pj) ⋅ (pi − pj+1) = ||pi − pj||||pi − pj+1|| cos �j,i,j+1
So we can write

[(pi − pj) × (pi − pj+1)] cos �j,i,j+1 =

[(pi − pj) ⋅ (pi − pj+1)] sin �j,i,j+1nj,i,j+1

and hence

[(pi − pj) × (pi − pj+1)] cot �j,i,j+1 =

[(pi − pj) ⋅ (pi − pj+1)]nj,i,j+1

Since the cross-product and dot-product are both polynomial

functions, this formula is a polynomial as well.

In order for a mesh configuration to be be dihedral in-

finitesimally non-rigid, we need Equations 2 and 3 to be true

for every angle, as well as for all of the sub-determinants

of M to be zero. These conditions are all polynomial, and

they define a variety (the intersection of their zero-sets) in

the space of the p, n, c variables.

An arbitrary assignment of values to p, n, c does not cor-

respond to an immersion of the mesh; the p-variables are all

free, but the n and c will not obey Equations 2 and 3. Given

a choice of p variables, the n and c variables of that embed-

ding uniquely satisfy 2 and 3 (that is, the normal is indeed

the cross-product, scaled as required). So there is a unique

lifting of the Euclidean space defined by the vertex coordi-

nate space p into (p, n, c)-space. Let P̃ be this lifting of the

the vertex coordinate space, which is Euclidean. The space

P̃ is similarly simply connected and 3n-dimensional.

If we have a connected component of an algebraic variety

and we add an additional polynomial constraint to the sys-

tem, either the the whole component satisfies the new equa-

tion, or the dimension of the new variety is reduced by the in-

tersection with the new equation. Thus, if there is any point

of P̃ which does not also satisfy the system F verifying that

a configuration is rigid, the set of common zeros (the space

of dihedral infinitesimally non-rigid polyhedra) has smaller

dimension than P̃ , and forms a subset of measure zero in the

space of possible configurations.

So all we need to do to show that the dihedral infinites-

imally non-rigid polyhedra form a set of measure zero is to

display some point in P̃ which is not in F ; that is, a dihedral

infinitesimally rigid polytope. As it happens, we can do this

for every mesh topology; the results of Pogorelov [Pog02]

and Mazzeo and Montcouquiol [MM+11] show that every

convex polyhedron is dihedral infinitesimally rigid, and we

know that every mesh topology can be realized as a convex

polyhedron (this is Steinitz’ theorem). This completes the

proof of Theorem 2.
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